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TECHNICAL MEMORANDUM X-64605

A FIRST-ORDER THEORY FOR ROTATING
GRAVITY GRADIOMETERS

SUMMARY

The equations of motion for a rotating gradiometer are developed and
specialized to a forced harmonic oscillator model that may be solved analyti-
cally. Numerical results are given comparing the analytical approximation
to numerical integration of the exact equations.

INTRODUCTION

A rotating gradiometer may be visualized as two perpendicular
dumbells coupled at their centers by a mechanical torsional spring pivot.
Gradiometers have been studied experimentally and theoretically for appli-
cation to a variety of problems involving the measurement of gravitational
fields [1-3].

Since the gravitational torque on each dumbell of the rotating gradi-
ometer is opposite (and equal if they have equal moments of inertia), there
will be a deflection of the spring pivot coupling. This deflection is the
quantity that is observed and related to the torque which may then be related
to the external gravitational field and mass.

The general relationship for the torque on any rigid body because of
an external gravitational field is presented in the Appendix. This report
begins with that basic relationship and develops the specific equations for a
rotating gradiometer. Conditions at resonance are also discussed since the
gradiometer may be rotated at a speed commensurate with the fundamental
frequency of the spring to give a resonant condition.




GENERAL EQUATIONS

As shown in the Appendix, the gravitational torque on any rigid body
ig given by

N=-G6 [ v,(M)idm , (1)
m

G is the universal gravitational constant, m is the external mass,
he moment of inertia matrix of the rigid body, and V, is the gravity-
Jient matrix of the gravitational field generated by m. It is also shown in the

1ix that equation (1) is invariant under orthonormal coordinate
mations.

if m is considered a spherical homogeneous mass and ﬁ V, and
nre referred to the principal axes of the small body, equation (1) becomes

xI'R , (2)

:xe the primes indicate that the quantities are referred to the principal
s of the small body and I' is the diagonalized moment of inertia matrix of
small body; i.e.

0 0
I'=10 B 0
0 0 C

Figure 1 gives the geometrical relationship of the prime system
(fized along the principal axes of dumbell no. 1), the unprimed system (fixed
in the laboratory), and the R vector.

The torque on dumbell no. 1 referred to the x,y,z system may be

noas
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DUMBELL #2

<V

Figure 1. Geometry of principal coordinates and laboratory coordinates.

where T is the transformation matrix from the primed (principal) axes of
dumbell no. 1;i.e.,

CcOS 91 - sin 61 0

T = sin 84 cos 04 0
0 0 0
and
Rcos 6 cos ¢ Rx
R-= R cos 6 sin ¢ = Ry
R sin ¢ R

[ov)




After denoting the principal moments of inertia of dumbell no. 1 as
Ay, By, 'and Cy, it is assumed that A;= 0 and B;= C;. Thus, Ii becomes

0 0 O
11 - 0 C1 0
0 0 Cy

Using these results in equation (3) gives

"y ] [ smac L . ]
N ——§5—1 (RyRZ sin®6y+ R R_sin 0 cos §y)

> . 3mGC 9 .
Ny = N = ——ﬁrl(-RXRZ cos“ 64+ RyRZ sin 64 cos 0y) . (4

Z L R

(1) 3mGC 1 |
N —=l (R;—R;) 3 sin2 64+ Rny cos 2 91‘;

Similarly, the gravity-gradient torque on dumbell no. 2 is

o -y ‘l -
(2) | 3mGC .9 )
N, —-——R;H (RyRZ sin“6, + R R_ sin 6; cos 65)
— 2 3mGC .
N, N; ) = -——R-5-—2 (-RX]RZ cos? 0q + RyRZ sin 64 coOS 05) . (bH)
2 " 3mGC i .
Ni ) —-—R-rZER; -R;) By sin 2 62+RXRy cos 2 62]

Now assuming that the deflection of one of the dumbells with respect
to the other is restricted to the x,y plane that coincides with the x',y'
plane, then only the N components of the torque contribute to this
deflection. This allow equating the third component of the torque to the rate
of change of angular momentum along the z axis. Before doing this, how-
ever, the restoring and damping torques will be formulated.



The restoring torque on dumbell no. 2 is
N - ke, | (6)
and the damping torque on dumbell no. 2 is

N

where k and h are assumed constant. Likewise, the restoring torque on
dumbell no. 1 is '

N§R) =k o , (8)
‘and the damping torque on dumbell no. 1 is
N

ha ) (9)

The sum of all the torques on dumbell no. 1 may be equated to Ciég )
and a similar operation may be performed for dumbell no. 2. Thus,

. : 3mGC T ]
CP;=ha +ka + -———5—1-R [(Ry-—RX)-é- sin2 64 + RXRycos201 (10)
and

. . . 3mGC, | i . ‘ .
Cyfy=-ha -ko + ——R-s—z E(«R;-R;)ES1n202+RXRy005292] . {11}

It is observed from Figure 1 that

0y = 04

i

T
—-——+
5 a (12)

then

il
R

Gy - 4,




Using these results in equations (10) and (11), a differential equation for «
and ¢; may be written as ‘

.s h h . k k 3mG ) . ‘ -
= e i e - —_— —— _ _
o {Cz C1>Oé (Ci G >oz TR (Ry RX)(smz 6y = 8Sin2 64)
me (13)
SmG
+ 5 RXRy(cosz fy —CcO826y)
and
o b .k 3mG 2 oo 1
61= c, o + C, @+ —7F [(Ry RX.) 5 sin2 64 +RXRy cos 2 e{l . (14)

Replacing 60, with 0+ a + from equation (12) gives the

ol

following differential equations for ‘@ and "§; as functions of « and ¢,:

et 3mG
o= -Ho -Koa + Eg— ®? - R?) (-sin26ycos2a -cos20y8in2 ¢
2R y X
. SmG
-sin29,) + R, RXRy(—coszelcoszaz
+8in2 6ysin 2w
-cos291)(15)
and
. h .k 3mG [,.2 1 ‘
6y = ?1 o+ E-ioz + R [(Ry—Ri;) —2-81n291+RXRycos2 91:1 , (16)
where
h k k
= —— d K= — + —
. ¢, ¢ ™ & ¢, G

These are the exact differential equations for a spherical homogeneous
perturbing mass generating a torque on the coupled dumbells where the



restoring torque is proportional to the deflection («) of the spring coupling
and the damping torque is proportional to the angular velocity («) of the
spring coupling.

FORCED HARMONIC OSCILLATOR EQUATIONS

Equations (15) and (16) are not forced harmonic equations for the
deflection, and certain assumptions are necessary before they can be reduced
to forced harmonic equations. First, the small angle approximation must be
made for o sothat cos2a =1 and sin2a = 2a = 0. The second
assumption that is necessary is to assume that Rx’ Ry, and Rz are constant.

A third assumption is that §; = wt where w = constant angular rate.

If the above éssumptions are made, then

3ImG 2 _ 2 . - 6mG p
—_T (Ry RX) sin 2 wt B RXRy cos 2 wt {(17)

-o+ .‘+ - -
o +Ho + Ko R

and
g,=wt . (18)
Since R = (RX, Ry, RZ) is assumed constant, it may be assumed that

R lies along the x axis without any lo_s}s of generality since this is equivalent
to assuming that the x axis is along R initially; then,

¢ +Hd +Ka = irl%gq-sinzcot , (19)

which is the forced harmonic oscillator equation.




SOLUTION OF THE FORCED HARMONIC.
OSCILLATOR EQUATION

The solution to equations of the form of equation (19) are well known.
An excellent discussion of the solutions may be found in Reference 5.

The solution to equation (19) for %— < K may be written as

-b
o =e t (Aycosat+ Ay sin gt) + % sin{2wt - B) , (20)

tanp = 4dbw
e —_ nz _ (Zw)z Py

and Ay and A, are initial integration constants.

One quantity that is usually of interest is the time constant 7, which is
sometimes referred to as the relaxation time or the -—i— folding time. This is
the time required for the first term (transient term) to reach —é— of its
original value. This occurs when br=1; i.e., 7= —;’)- =4 which is seen

to depend on the damping of the oscillator. When t — «, the transient term
goes to zero. This is the transient time that is seen to take several time
constants to get down to one-hundredth or one-thousandth of the initial value.
After the transient time, the oscillator is considered to be in steady state with
amplitude

3mG
a R®
— = : (21)
P {{nz_(zw)z]z_l_ (4bw)2}1/2

[o¢]



i
or for n>> —
T

Q=

|3

2
2b

and from equation (24) ,

= 1 (27)
nt
which gives
. 1 (o
20 = —— . (z3

This indicates that a high f and high Q are incompatible.

COMPARISONS AND RESULTS

The results of the forced harmonic solution and numerical integration
of equations (15) and (16) are shown in Table 1. The initial conditions
assumed were as follows:

K = (47r)2 radians/sec?

2

H = 0.404 radian/sec

2

and

w = 21 radians/sec

As can be seen, the steady-state results agree through the third
significant figure. From these results, it may be concluded that the forced
harmonic oscillator approximation is sufficient for design purposes. It should
be noted that the forced harmonic oscillator theory assumes a linear spring
constant and damping coefficient.

10




Another point of interest is the driving frequency w required to give
maximum steady-state amplitude. This occurs when p is a minimum; thus,

differentiating p with respect to 2w and equating the result to zero gives the
conditions : ‘

(20 ) = n? - 2p2

or

p = 2bNn?-1b? (22)

for maximum amplitude. These results may be used for determining the best
operating conditions of a gradiometer.

Savet [3] has suggested a figure of merit f for various sensors defined
as the sensitivity o divided by the time constant squared r°. The sensitivity -
is defined as the steady-state displacement amplitude divided by the amplitude
of the forcing term. This figure of merit in the present discussion turns out

to be
o a 1 : '
e go(Er)iediad =3
- o o 2 | (23)
Using equation (22) in the above,

f

(24)

i 1
2
2b72 N n?-b? o /ng__i_z_

If the quality amplification factor. Q is defined as the energy stored
in the spring divided by the energy dissipated per cycle at resonance and
steady state, then

Q= = (25)



TABLE 1. POINTS IN STEADY STATE FOR 1 ¢/s

Numerical Integration

Forced Harmonic Oscillation Solution

Time (sec) Delta (radians Time (sec) Delta (rgxgdians
x 10 ) x 10 )
30.0125 -0.59040669 - 30.0000 : -0.55015672
30.2625 0.59056961 30. 2500 0.55034407
32.0125 -0.59143408 32.0000 -0.59142200
32.2625 ~ 0.59152283 32. 2500 0.59154729
33.0125 -0.59174430 33.0000 -0.59188750
33.2625 0.59180415 33.2500 0.59198996
42.025 -0.59316773 42. 0000 -0.59363485
42.275 0.59323604 42.2500 0.5936516
Steady State
29.5125 ~0.59004683 30.0000 -0.59015672

Figure 2 shows the waveform for 20 sec, which indicates that the
transient term lasts for about 47 since T is 5 sec for this case.

i1
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Figure 2. Waveform for 20 sec for 1 ¢/s run.



~ APPENDIX

THE GRAVITY-GRADIENT TORQUE AS A CONTRACTED
ALTERNATING PRODUCT

THE GRAVITATIONAL TORQUE OF ONE RIGID BODY.ON ANOTHER

To establish explicit invariant relationships between the moment of
inertia of a small body, the gravity gradient because of the presence of larger
bodies, and the torque on the small body, it is necessary to define the moment
of inertia and gravity gradient in such a way that their transformation properties
are known.

The Moment of Inertia

—fp.p.dm for i#]
m -3
= ‘ A...‘
Iij ) (A-1)
f(pz-pi)dm for i=]j
m
where p = (py,pepy) , i=1{1,2,3}, and j = {1,2,8} . To check the

transformation properties of Iij’ an orthonormal Cartesian coordinate

transformation M is defined such that p = Mp ' ;i.e.,

= p
pi Mip‘{ p!
and
=M, P,
pj Jq‘ q’

Then, equation (A-1)becomes for i #j

13
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{n g N.I ’ dm”,f,Mlpquiq'dm

- M. dm\M, =M, . M.
ip' Ifnpp'pQ' Lo = Mipr Torgr Mygr

il

i

(') M= (mMD (a-2)

iq’
Thus, I= M['MT for i#j . For i=j, the integrals in equation (A-1)

are all of the form f pipi dm , which will also transform according to

equation (A-2).

The Gravity Gradient

The gravity gradient is usually defined as the secound partial derivatives
of a potential function, say V(xy,X3,%X3). Then,

_ %W
ij ~ ox. ox,
R |

v, (A-3)

To check the transformation properties of V, i an orthonormal Cartesian

coordinate transformation M is defined such that X = Mx ' . Thus,

[
o




Now,

o -2 fav) _ o f(av o\ o eV
"1 ox, \Ox, 9x, \ 90X 1 OX, 9%, 909X, pi
J i J b 1 ] p
5 ov % 9%V
T 5x ., 9%, 9% p'i 8x ,0% Mq’j Mp'i
A\ -
a P T q p'
=V, M, M, = M, V), ,M,
pg g pi p'i p'q’ ]
T Tt T T
= M, (V,M) .. = (M) VIM |, = (MVIM)..
p'i p' ij ij
| o T
Thus, V, = MV!M . (A-4)

The Torque as the CAP Product of V, and |

From Figure 1, the element of force d(d-f‘)) on the element of mass
dm because of the element of mass dm* is

o s T

4(dF) = -Gdmdm* ’g?i = - Gdmdm* (d) . (A-5)

R e ——g h
However, gai.rgcg@;: v+ p and it is assumed that p << r, then the it
component of £(d) is [4]

of.
. ,"ﬁb —_— — ° et 1 . ol
:itﬁ@} = fi(r+p) = fi(r) + rons pj = fi(r) +V’ij PJ. - (A-6)
i : 7

Whers

= (XE:XZ:X?))Q Y = (p1:p2ap3) 9

oV 1i
F S e d v= —
gi axi » an d



Now, substituting equation (A-6) into equation (A-5),
d(dF) = - Gdmdm * [£(1) + V,5’]
The torque about 0 because of the force of dm* on dm is

d(dN)

it

7% d(dF) = -Gdmdm* px [£(F) + V.5 |

Il

- Gdmdm*p x T(1r) - Gdmdm#* px V, p_

Integrating first over m gives

dN = - Gdm* [ px f(x)dm - Gdm* [px V, pdm . (A=7)
m m

The first integral on the right is zero because of the choice of ¢ as the center
of mass for m. The cross product in equation (A-7) is

] V’ - . - V, -I).1

PXV,p = | psV,, p. = P V,..p.
P 37015 1Y 35

piV,. p. PV, P,

R TRV

Expanding and integrating over M gives

v, 23 I3j - V,3j I2j
dN = - Gdm* v, 3 I1j -V, 1 I3j
V,1j Izj - V,Zj I1j

.

17



= = Gdms¥%

[(V,T) 5

(V: I) 31

(Vs I) i2

(V,D g |

(V,I) 13

(V,I)oy

(A-8)

Ag a notation convenience, it may be observed that the result in equation

{A~-8) may be obtained by placing the column or row vectors of V, and I

in a determinant and using the conventional cross product rule except that the
dot product is used when multiplying the column vectors. Using the Contracted

Alternating Product (CAP) symbol @ to indicate this operation between V,
and I, one has

€ e; e3 Vo I3 - V3 I
v,(1= Vi Vo Vi| = VeI - Vi I ; (A-9)

Vi-L - Ve L

sy 'c; | 3 - 3 e =
which is the same ag equation (A-8) since Vi (V’ii’ V’iz’ V’i3) s

i
T e 4T

=(1,.,1 93’ 131) and both V, and I are symmetric. Thus, the torque
i1 Z

1 p=—

given in equation (A-8) may be written as the CAP product of V, and I as

AN = - Gdm* V, @1

N= -G f v, @)Idm* (A-10)
ek

Thig is considered to be desirable since it has the effect of separating or
isclating those effects that depend on the field which is in V, and those that
depend on the physical characteristics of the body which is in I. It also gives
their relationship to the torque.

18




The Torque Referred to a Coordinate System in Which
| is Diagonal

It may be shown that applying an orthonormal transformation to the
CAP product of two matrices (or tensors) is the same as the CAP product of
the transformed matrices (or tensors). It has already been seen that V, and
I transform according to equations (A-2) and A-4); then, if M is the trans-
formation from N' to N,

(AN = MdN' = -Gdm*MVI @) T = -Gdm* MV M (D)MIM

= -Gdm* V,@ I
or

N=-G [ V,@®dm* . o (A-11)
m*

From the preceding discussion it is clear that to refer the torque N
to a particular coordinate system, both V, and I must also be referred to
that system. For example, I may be diagonalized by referring I to the
principal axes of M. In this system, the CAP product becomes

e -

Vi23(I'5y = 1'33)

VT = | Vig(I's3 - T'yy) , (A~12)

| V3iia(Iyy = T'p)

where the primes indicate that the quantities are referred to the principal axes
of m. From equation (A-12), the torque in the primed system depends on the
three cross gradients; however, if the torque is transformed by a general
rotation of coordinate axes, each component of the torque depends on all five
of the independent gradient elements as indicated by equation (A-9).

19




The Torque of a Spherically Symmetric Homogeneous Bodyona . -
Small Distant Body

I:%f___}m* is sgt)xerically symmetric, then ?: (0,0,0) in Figure 1-A so
that =R - p* = R; then,

v, = 4 o 2%@2_
Substituting the above into equation (A-10) and integrating gives

N= S5 RXIR (A-13)
where

R = (Ry, Ry R

This is the same result as used in Reference 6.

SUMMARY

An explicit relationship has been developed between the gravity gradient,
moment of inertia, and torque of one large rigid body on another small body.
his theory, conclusions can be drawn concerning observable quantities
and derived information from the cobservables. Also various applications,
measurement concepts, and analysis techniques can be developed.




REFERENCES

Trageser, Milton B.: A Gradiometer System for Gravity Anomaly
Surveying. Advances in Dynamic Gravimetry, Proceedings of the
Symposium on Dynamic Gravimeter, March 16-17, 1970, Fort Worth,
Texas, Published by the Instrument Society of America.

Bell, Curtis C.; Forward, Robert L.; and Williams, Harvel P.: Simu~
lated Terrain Mapping with the Rotating Gravity Gradiometer. Advances
in Dynamic Gravimetry, Proceedings of the Symposium on Dynamic
Gravimetry, March 16-17, 1970, Fort Worth, Texas, Published by the
Instrument Society of America. ‘

Savet, Paul H.: Gravity Field Exploration by a New Gradient Technique.
J. Spacecraft and Rockets, vol. 6, no. 6, June 1969.

Roberson, Robert E. ; and Tatistcheff, D.: The Potential Energy of a
Small Rigid Body in the Gravitational Field of an Oblate Spheroid. Journal
of the Franklin Institute, vol. 262, 1956, pp. 209-214.

Brand, Louis: Differential and Difference Equations. John Wiley and

Sons, Inc., New York, 1966.

Holland, Robert L.; and Sperling, Hans J.: A First-order Theory for the
Rotational Motion of a Triaxial Rigid Body Orbiting an Oblate Primary.
The Astronomical Journal, vol. 74, no. 3, April 1969.




APPROVAL

A FIRST-ORDER THEORY FOR ROTATING
GRAVITY GRADIOMETERS

By Robert L. Holland

The information in this report has been reviewed for security classifi-
cation. Review of any information concerning Department of Defense or Atomic
Energy Commission programs has been made by the MSFC Security Classifica-
tion Officer. This report, in its entirety, has been determined to be unclassi~-
fied.

This document has also been reviewed and approved for technical
aoCcuracy.,

e o Ry \/\ @MM‘\L«/

ROBERT J. NAUA{VLA
Chief, Physics and Astrophysics Division

Gutang B Yol

GERH A 1D B. HELLER
Director, Space Sciences Laboratory




INTERNAL

DIR
Dr. Rees

DEP-T

AD-S
Dr. Stuhlinger

S&E-DIR
Dr. Weidner

S&E-CSE-DIR
Dr. Haussermann

S&E-ASTR
Dr. Nurre
Mr. Hosenthien
Dr. Doanne

S&E-PD
Mr. Dudley

Mr. Kermit Hudson

S&E-R-DIR
Dr. Johnson

S&E-SSL-DIR

Mr. Gerhard Heller

Mr. Ray Hembree

S&E-SSL-C
Reserve (15)

S&E-SSL-S
Mr. Williams
Dr. Sieber
Mr. Loughead

DISTRIBUTION

S&E~-SSL-P
Dr. Naumann

S&E-SSL-PM

Mr. Robert Holland

Mr. Darbro
Mr. Parker

S&E~-COMP-DIR
Dr. Hoelzer

S&E-COMP-DS
Mr. J. C. Lynn

S&E-COMP-RRF
Mr. Rodrigue

A&TS-PAT

Mr. L. D. Wofford, Jr.

A&TS-MS-IL (8)
A&TS-MS-IP (2)
A&TS-MS-H
A&TS-TU (6)
PM-PR-M

EXTERNAL

Scientific and Technical Information

Facility (25)
P. O. Box 33

College Park, Maryland 20740

Attn: NASA Representative (S-AK/RKT)

23



 DISTRIBUTION (Concluded)

EXTERNAL (Concluded)

National Aeronautics & Space
Administration

oton, D. C. 20546

‘v, Blmer Christiansen, MAL

Mr. Robert Bryson, MAL

Mr. Floyd Robertson, MAL

Myr. Warren Keller, SL

[T
otand

I University

Depariment of Aerconautics &
Agtronautics

Stanford, California 94305
Dr. Dan Debra
Dr. John V. Breakwell

sonian Astrophysical
srvatory

Garden Street

ridge, Mass. 02139
Jr. Charles A. Lundquist
Dr. Colombo

Grummaean Alrcraft Engineering
Corporation

]
W

MIT, Charles Stark Draper Lab.
68 Albany Street
Cambridge, Mass. 02139

Mr. Milton B. Tragreser

General Oceanology, Inc.
27 Moulton Street
Cambridge, Mass. 02139

Air Force Cambridge Research
Laboratories
Lawrence G. Hanscom Field
Bedford, Mass. 01730
Mr. David Anthony
Dr. Zabo

Auburn University, Math Department
Avburn, Alabama 36830

Dr. Philip M. Fitzpatrick

Dr. John Cochran

NASA

Manned Spacecraft Center
Houston, Texas 77058
Mr. William Wollenhaupt
Dr. Philip Chapman
Mr. William Chapman
Mr. Don Incerto

NASA
Langley Research Center

- Langley Field, Virginia

Hampton, Virginia 23365
Mr. A. G. Beswick





